Two petabytes of data for climate research

Climate change, with all its ecological and economic implications, is one of society’s greatest challenges.

It is imperative that we develop efficient strategies and derive measures to protect our sensitive climate system on a global scale. In order to do this, we must gain a profound understanding of the complex environmental processes that contribute to climate change. Atmospheric researchers from the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) have recently made an important contribution to this.

The EMAC (ECHAM/MESSy Atmospheric Chemistry) simulation system was used to reconstruct respectively forecast the chemical composition of our atmosphere from 1950 to 2100. Exact knowledge of this development is important, as there is a connection between atmospheric chemistry and the climate. Among other things, the data obtained from the model allow scientists to draw conclusions on the influences of individual atmospheric variations on climate change. A detailed description of atmospheric composition is a particular feature of the climate-chemistry model. Moreover, the modular EMAC system was linked to an ocean model to also enable comprehensive consideration of oceanic influences.